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Abstract
The United States Department of Agriculture’s National Agricultural Statistics
Service (NASS) uses probability surveys of hog owners to estimate quarterly
hog inventories in the United States at the national and state levels. NASS
also receives data from external sources. A panel of commodity experts forms
the Agricultural Statistics Board (ASB). The ASB establishes the NASS official
estimates for each quarter by taking into account survey estimates and other rel-
evant sources of information that are available in numerical and non-numerical
form. The aim of this article is to propose an estimation method of hog invento-
ries by combining the NASS proprietary survey results, the hog transaction data,
the past ASB panel expert analyses, biological dynamics, and the inter-inventory
relationship constraints. This approach downscales the official estimates to pro-
vide monthly estimates according to well-defined biological growth patterns.
The model developed in this study provides national estimates that may inform
the quarterly reports.
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1 INTRODUCTION

National hog inventories constitute one of six principle economic indicators for the status of the United States (US) agri-
cultural economy. The United States Department of Agriculture (USDA) National Agriculture Statistics Service (NASS)
uses quarterly surveys to quantify hog inventories in the US at the national and state levels. The survey sampling approach
is used to investigate the US swine population, establish unbiased estimates of inventories and track the evolution of the
swine industry over time. However, survey estimates are not always consistent with the information available from other
sources, such as biological growth, administrative data, and historical records. To address this issue, a panel of commod-
ity experts forming the Agricultural Statistics Board (ASB) sets current official estimates by combining survey estimates,
administrative data, and historical records.

Modeling the temporal dynamics of the swine population is a natural statistical avenue for providing timely and
accurate inventory estimates with measures of uncertainty to the ASB. Model-based estimates are required to be con-
sistent with hog biology and standard practices of the swine industry. A comprehensive formulation of the quantities to
model that combines historical estimates with current survey data is essential for capturing temporal relationships across
variables.
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This article is structured as follows. Section 2 describes the current model, other attempts to model hog inventories,
and the objectives addressed by the new model. Section 3 provides an overview of the available information and the
data requirements to properly fit the model. The estimation process to produce national estimates for the swine report is
presented in Section 4. The proposed model is introduced in Section 5. The estimation procedures adopted for producing
model-based estimates are presented in Section 6. Data analyses and model comparisons are presented in Section 7. Final
remarks and conclusions are given in Section 8.

2 THE NEED FOR A NEW MODEL

New models can be developed to provide quarterly estimates. To facilitate this process, the new model should consider
all available information within a comprehensive mathematical formulation. In particular, the model should be able to
produce estimates for the variables of interest by tracking:

• Hogs population dynamics from birth to slaughter;
• Number of deaths due to disease outbreaks and survival rates;
• Economic cycles of expansion (e.g., when pork producers recover the losses experienced from disease outbreaks) and

contraction.

To achieve these goals, NASS has been using a model developed by Busselberg,1 which is a time series approach
based on a constrained state-space model (SSM). Given the present information, the SSM provides inventory estimates by
maintaining stable accounting relationships and biological dynamics and satisfying a set of constraints.2 This approach
consists of two phases:

1. The model parameters describing linear dynamics of the system and its evolution are estimated such that the trajectory
of the model satisfies the given constraints;

2. The inventory estimates are based on the most current parameter estimates. Measures of uncertainty, such as standard
errors and coefficients of variation, are also provided.

Another model was developed by Kedem and Pan3 to improve the SSM and implement a more flexible model that is
able to capture departures from a state of equilibrium during unstable periods. This approach is based on a sequence of
pairwise comparisons between linear time series models with exogenous variables, where the best model is selected for
predicting the quantities of the quarter of interest. Useful economic covariates, such as hog and pork prices, are tested
using spectral analysis, and the final model is selected according to its efficacy. At the end of the process, the winning
model is selected to produce estimates, forecasts, and the measures of uncertainty.

These two models are capable of producing estimates with desirable characteristics, but the strengths of one
are the weaknesses of the other and vice-versa. Although the SSM takes into consideration biological proper-
ties of hogs and captures an equilibrium dynamic that satisfies the accounting constraints, it is unable to adapt
quickly to systematic shocks, such as disease outbreaks, resulting in heavily biased and unrealistic results. On
the other hand, Kedem and Pan3 model provides a very flexible model that quickly captures the economic pat-
terns and departures from an equilibrium state, but it does not satisfy reasonable biological dynamics of the hog
population.

To improve these two approaches, a flexible model that adapts quickly to shocks and also takes into consideration
the biological growth of the hogs forming the population under study is desired. The approach considered in Section 5
tracks the newborn piglets by both modeling their growth and survival rates. Other relationships, such as those between
breeding herd and sows farrowed, are based on the knowledge of biological gestation of sows (e.g., durations and average
litter sizes), and they are formulated separately.

2.1 Finer temporal resolution

Hog reports are released to the public every quarter toward the end of March, June, September, and December. The official
statistics show:
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• The hog and pig inventory of the current quarter and the previous four;
• The inventory by class (i.e., breeding herd and total market hogs);
• The inventory of market hogs by weight group and by state;
• The number of sows farrowed, pigs per litter and pig crop in every quarter and month;
• The farrowing intentions by state for the following quarter.

The official report in December provides a detailed description of the quantities measured through the survey in all
50 states whereas the others focus on the 16 major hog producing states (specifically for Colorado, Illinois, Indiana, Iowa,
Kansas, Michigan, Minnesota, Missouri, Nebraska, North Carolina, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas,
and Utah). This framework allows NASS to quantify yearly coverage adjustments by more frequently sampling the 16
states that supply 95% of the total US swine production.

There is an on-going effort to improve the methodology used to compute model-based estimates. Survey data are
collected on a quarterly basis, but questionnaire respondents enumerate sows farrowed and pig crop on a monthly basis.
The other inventory variables are collected quarterly as point-in-time data. Thus, modeling monthly inventory numbers
requires identifying the relationships between quarterly and monthly data and extrapolating monthly numbers when
these are not directly surveyed.

From a biological perspective, the relationships between variables of interest are evident and self-explanatory. In par-
ticular, about a sixth of the sows in the breeding herd farrow every month. These sows produce a litter of 10 piglets on
average. The new born litter will be then counted with all the other pigs weighing less than 50 lbs. As the hogs and pigs
grow in age, they gain weight. USDA tracks quantities of hogs as they transition from one weight class to a heavier one.
Moreover, it is also possible to include the average survival rate of hogs and introduce realistic variations that are expected
to be dependent on the weight of the animals. This is reasonable since the younger hogs are more vulnerable to epidemics.

2.2 Reactivity to shocks

Shocks impacting the number of estimated hogs are sudden departures from their expected values computed under stan-
dard conditions. These conditions are defined using an equilibrium pattern, which may reasonably extend over a long
period of time. The occurrence and the impact of a shock are not easily predictable.

However, shocks are not the only issue with departures from the expected trajectories of the time series;
in fact, abnormal cyclical patterns can manifest and become the new cyclical pattern for the future. The iden-
tification of systemic shocks or unforeseen changes of the process requires specific testing techniques, which
can be combined with a flexible formulation of the model to improve the inventory estimation using available
data.

Shocks are due mainly to either disease outbreaks or market phenomena. Elevated mortality rates are associated with
specific diseases. Usually, estimated pig crop rapidly drops as the disease spreads, and increases to get back to normality
afterwards. Some example of market phenomena are found in crises, new national and international trading policies con-
nected to the pork demand, and other events that impact market prices, which may include climate-adverse conditions,
variations of the capacity of the slaughter facilities, and new breeding techniques.

2.3 Reducing number of constraints

The SSM,1 as currently used at NASS, imposes constraints to produce reliable results that are consistent with hog biology
and the available information at the national level. The limitation of this approach mainly consists of attaining maximum
likelihood estimates on a restricted parametric space that is also shaped by the values assigned to the latent variables,
which are unknown. This is quite difficult to achieve since the estimation of the model parameters is based on the stan-
dard Expectation-Maximization (EM) algorithm,4 which iterates two steps until the usual convergence criteria are met.
If this iterative procedure is performed without forcing constraints, the resulting values would contradict reasonable bio-
logical laws related to the herd reproduction, population growth, and survival. For example, it is possible to generate large
numbers of hogs belonging in a heavy weight-category without having enough hogs in the lighter weight-groups dur-
ing the previous months. Furthermore, if the model does not take into consideration physical, biological, and economic
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constraints, contradictory totals are likely to appear either during the periods under the influence of shocks or after the
epidemics when the effect of disease outbreaks is mitigated.

Through the inclusion of constraints, the algorithm produces results that are consistent with both the expected bio-
logical growth of hogs and other population dynamics related to birth and death processes. The constraints operate in
two ways:

• Changing the direction and the magnitude of the descent step while optimizing the model parameters, for example,
by introducing a penalty term when performing LASSO regressions;

• Forcing a set of linear and nonlinear equations defining known relationships among variables of the model, for
example, the computation of the latent variables gets simplified by introducing constraints in the model of the outcome
variables.

The combination of these two approaches allows a regression method to be developed that simultaneously produces
estimates for the swine inventories and the model parameters that are coherent with the swine population dynamics.
However, the SSM is computationally limited since the number of constraints causes the model to be very rigid. Further-
more, the EM algorithm converges slowly to a reliable solution especially when the constraints hardly admit a feasible
one.

The mortality rate included in the SSM appears as an accounting constraint, and it remains fixed across time. Hence,
this approach does not account for the risks of major diseases associated with hog casualties. Other accountability con-
straints were developed to avoid abnormal patterns during periods of long-term equilibrium, where both the observed data
and past official statistics provide enough information to estimate inventory quantities. The mathematical constraints
are forced during regression, resulting in parameter estimates that have overly rigid constraints and thus cannot change
quickly when the system is in a state of disequilibrium, that is, when a shock changes the dynamics of the system.

Standard population dynamics have been explained in the past using simple stochastic models,5 which can be further
extended to address the rigidity of the SSM. Stochastic models also allow the complexity of the population dynamics to
be studied by providing a distribution for the random components in the model.

3 SOURCES OF INFORMATION

Survey data are collected through questionnaires and constitute the most important source of information. However,
other sources such as administrative records and historical official statistics are also helpful in establishing tempo-
ral patterns, such as trend, seasonality or other cyclical behaviors that are stable across time. Based on all these
sources of data, the ASB produces a set of reliable estimates that account for the modeled values, administrative
data, and non-numerical knowledge. A new mathematical approach determines the population dynamics through
the use of the past official estimates and makes adjustments that account for summary statistics from current survey
data.

3.1 Published estimates

NASS publishes quarterly statistics for hogs and pigs. These reports are organized in sections and primarily consist
of tables that show the official statistics for sows farrowing, pig crop, pigs-per-litter, breeding herd, market inventory
by weight group and total inventory. These tables are provided for the entire nation and the 16 major hog producing
states (or all states for the report of December). Monthly statistics are also provided only for sows farrowed, pig crop, and
pigs-per-litter at the national level.

Quarterly swine inventory quantifies the total hogs and pigs in the US as of the first day of March, June, September,
and December. These totals are then split into two quantities associated with two hog classes: the breeding herd and
market hogs. The numbers of sows and boars kept for breeding are distinguished from the hogs raised to be marketed.
The market hogs are themselves subdivided into the following weight groups:

• hogs weighing under 50 pounds;
• hogs weighing between 50 and 119 pounds;
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• hogs weighing between 120 and 179 pounds;
• hogs weighing at least 180 pounds.

The number of sows farrowed and newborn piglets are provided over semiannual, quarterly, and monthly periods.
Their estimates are published together with the litter rate computed as the ratio between sows farrowed and litter size.
These quantities are useful in establishing production patterns at several temporal resolutions.

The ASB revises the past four quarters to ensure that the final estimates are consistent with the totals provided
by administrative data. This process can be seen as a post-calibration to reduce the potential bias of the estimates
already published, for example, the slaughter data are collected weekly and can be used to inform adjustments to the
estimates.

3.2 Survey data

Survey data are collected from a stratified random sample of hog and pig producers. Stratification is applied based on
control data for the number of hogs owned by the operation. The stratified samples are selected according to sample-size
allocations defined by state and strata of homogenous operators. The December Hog Survey is the only quarter survey for
which the operations of all states can be sampled. NASS collects data by mail, computer assisted web interviewing (CAWI),
computer assisted telephone interviewing (CATI), and computer assisted personal interviewing (CAPI). Phone follow-up
of mail non-response is also conducted to reach the highest response rate.

The survey is designed to collect data for several variables that monitor the production of hogs and pigs in the US. The
main variables used for producing quarterly/monthly estimates are

• the number of sows farrowed over the three consecutive months preceding the surveyed quarter (one measurement
per month);

• the size of the litter (post-weaning) measured over the same periods for the sows farrowed;
• the size of the breeding herd (number of heads counted on the first day of the surveyed quarter). It mainly consists of

sows, even if each operation keeps a negligible number of boars for breeding purposes. The sows in the breeding herd
are either bred, weaning piglets, or between gestation periods, which last about three months;

• the number of the market hogs distinguished according to the four weight classes (number of heads counted on the
first day of the surveyed quarter); and

• the breeding intention for the next two quarters.

The size of an operation plays a role in the frequency of data collection for specific operations and the completeness of
data that are collected. These factors are unpredictable when a disruption of equilibrium occurs. Further, reported data
are seldom complete so imputation techniques are utilized to account for the missing data.

3.3 Biological specification

The biological patterns of growth have been thoroughly studied as exemplified by Shull,6 Park et al.,7 and Park and Oh.8
An average growing pattern under relatively normal circumstances can establish the time required for hogs and pigs to
reach a weight of 250 lbs, which is approximately the weight threshold that makes a hog ready to be processed by slaughter
facilities.9 From the analysis of the results in table 23 (page 117 of Shull6), the model proposed by Bridges et al.10 best
describes the average growth pattern of hogs and is mathematically

W(t) = 𝜔0 + 𝜔1(1 − exp(−𝜔2t𝜔3)),

where W(t) is the average weight of a living hog at a time t expressed in months from the date of birth, 𝜔0 represents the
mean weight at weaning (approximately 12.57 lbs), 𝜔1 denotes the mean-growth upper asymptote (approximately 440.04
lbs), 𝜔2 and 𝜔3 are parameters that control the shape of the growth curve. The value of 𝜔2 represents the growing rate of
approximately 0.0166, and 𝜔3 denotes the acceleration of the growth of approximately 1.9858.
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The average biological growth determines the number of times a hog belonging to a certain weight class is counted
during some time frame. This approach allows the number of hogs that transition from one weight class to another within
a specific time frame to be quantified. These transitions are then used to calculate the propagation of the newborn piglets
at several measurement days across time. In so doing, the estimates of the market hogs by weight group will be more
inclined to satisfy the constraints imposed by the current SSM.

3.4 Administrative sources

Slaughter data are the primary administrative source of information for hogs and pigs. These data are provided to NASS
by the inspectors of USDA’s Food Safety and Inspection Service (FSIS), who collect data and demographic information of
the regulated slaughter facilities. The number of pork carcasses are enumerated and can be combined with other datasets
to enhance the analysis.

These data are available on a weekly basis and are part of the review of published estimates. The data consist of

• several variables describing the establishments that process meat, poultry, and eggs,
• the inspection activities,
• the slaughter variables and other information about the products and their safety for human consumption.

These data are not used as predictors to develop the model, but they can be employed to constrain the heaviest inven-
tory class of hogs. Instead of using the past official estimates in the model, the most recent values attributed to the variables
involved in the analysis are adjusted within the model by aggregating the weekly slaughter numbers and the information
provided by the official statistics. This offers the opportunity to adjust the trajectory of the model, under the assumption
that the best use of the available information is made.

4 OVERVIEW OF THE ESTIMATION PROCESS

The proposed model provides monthly estimates of hog inventories at a national level by modeling bio-
logical dynamics for the US swine population. The estimation process of estimating ŷt consists of five
stages (Figure 1):

1. Information gathering: organizing preliminary information;
2. Pre-processing: adjusting and summarizing the initially gathered information into a single dataset;
3. First estimation: producing estimates for the pre-board;
4. Information update: updating the dataset to be used after the pre-board;
5. Second estimation: producing updated estimates for the Agriculture Statistics Board (ABS).

The first stage consists of gathering information from the survey respondents at time t in the form of
micro-data. NASS’s official estimates are based on historical and administrative data and state recommenda-
tions provided by NASS’s field offices. All this information is organized and made available for successive
adjustments.

The pre-processing stage consists of three operations that are performed with the purpose of generating a comprehen-
sive dataset that accounts for both the historical dynamics of the hog population and the current survey data. During
this stage, micro-data are aggregated into summary statistics that are adjusted for coverage, non-response, and sampling
errors.

Once a comprehensive dataset y(1)
t is created, the first estimation process starts. The parameters of the model

are estimated by using iterative regression techniques, and the fitted values for the variables of interest ŷ(1)
t are

calculated for the most recent quarter. The output from the estimation procedure is then passed to the pre-board
along with historical data and the aggregated survey data. Four experts forming the pre-board assess the available
information and set updated estimates that account for factors not captured by the modeled dynamics and/or the
survey.
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F I G U R E 1 Estimation process [Colour figure can be viewed at wileyonlinelibrary.com]

The pre-board provides a set of estimates y(2)
t for the current quarter and revises values of the published estimates in

the last four quarters based on administrative data. These can inform the estimates by providing updates that account
for information acquired one year after the publication date of first estimates. The published statistics can be considered
final after the fourth revision.

Once the dataset is fully updated, the second estimation process begins. This final procedure consists of two consecutive
steps. First, the model is fitted by using the updated dataset as input. Second, the results from the model ŷ(2)

t are provided
to the ASB. The ASB consists of nine or ten livestock-commodity experts (including those forming the pre-board) who set
the official estimates ŷt.

http://wileyonlinelibrary.com
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F I G U R E 2 Pork production processes. The solid arrows represent the dynamics considered in the SDTP model. The dashed arrows
denote existing dynamics that do not have the potential to alter the results when ignored [Colour figure can be viewed at
wileyonlinelibrary.com]

5 A STRUCTURED DISCRETE TIME POPULATION MODEL

A structured discrete time population (SDTP) model11 can track the growth of newborn piglets, and provide monthly
estimates for the inventory number of market hogs (classified by weight). In an approach different from the Liz and
Pilarczyk’s proposal,11 the survival rates associated with monthly cohorts of newborn piglets and harvest rates are used
only for swine that reached proper maturity weight. Also, the stock-recruitment function is handled differently, since
the size of the breeding herd, pig crop (i.e., the number of weaned piglets), and the number of sows farrowed are
determined with classical time-series models. The SDTP model presented in this section assumes an average dynamic
growth rate for weaned pigs born within a month, and it reproduces patterns of standard practices of the swine
industry.

A conceptual map of the hog production chain can be used to formulate class transitions and relationships
among quantities to be modeled. The evolution of the hog production system can be visualized by considering
classical approaches that managers use to establish and improve production efficiency. This analysis leads to a
simple model that describes the connections among the variables of interest (see Figure 2) and honors biological
constraints.

The model is divided into two systems of equations:

• The first describes the relationships between sows farrowed and pig crop, which are measured on a monthly basis. The
number of sows farrowed is also related to the size of the breeding herd for the previous quarter. These numbers are
available through the quarterly surveys and provide monthly estimates that can be used to track hog production on a
finer time resolution.

• The second describes the total inventories of four weight groups at the national level. These totals, together with the
size of the breeding herd, form the total hogs in the US. However, the size of the breeding herd is only part of the first
system due to the close relationship with the number of sows farrowed (see Figure 2).

The proposed SDTP model will be explained in the following sections.

http://wileyonlinelibrary.com
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5.1 Model for variables enumerated monthly

At the national level, pig crop, sows farrowed, and litter rate are modeled differently than the five basic inventory items.
The strategy of having two separate models allows for different time units (monthly for pig crop and sows farrowed
versus quarterly for the other variables) and provides a reasonable explanation of the hog population dynamics from a
macroscopic perspective.

The equations governing the number of pig crop and the sows farrowed are{
E[y1,t] = 𝜌t E[y2,t],
y2,t = 𝜑 y7,t−2 + 𝜀2,t,

(1)

where time t is expressed in months, y1, t denotes monthly pig-crop, y2, t represents monthly sows farrowed, 𝜌t indicates the
litter rate at time t as it appears in NASS report, y7, t − 2 expresses the breeding herd size as measured on the first day of the
month t − 2,𝜑 denotes the farrowing rate, and 𝜀2, t accounts for the statistical error in modeling monthly sows farrowed (as
represented in Figure 2). However, since the values of y7, t and y2, t are, respectively, available on a quarterly and monthly
basis, the estimates for the breeding herd are obtained as y7, t =𝜑−1y2, t + 2 + 𝜀7, t, where 𝜀7, t denotes the monthly errors of
the breeding herd.

The dynamics of log(y1,t) and log(y2,t) are both modeled by a Seasonal AutoRegressive Integrated Moving Aver-
age (SARIMA) model.12 In particular, a SARIMA(2, 1, 2) × (2, 1, 2)12 is fit using LASSO regression.13 The LASSO shrinks
the parameter estimates for some variables toward zero by the use of a penalty term that is added to the likelihood. The
variables having parameter estimates of zero are removed, resulting in a parsimonious model with the remaining vari-
ables being most closely associated with the response. This approach, as shown by Wang et al.,14 also allows for automatic
time series model selection to be used in the estimation of the logarithms of pig crop, log(y1,t), and sows farrowed, log(y2,t).
Thus, in addition to Equation (1), the following set of equations should be considered in the estimation process:

⎧⎪⎪⎨⎪⎪⎩
(1 + 𝜙1,1B + 𝜙1,2B2)(1 + 𝜙1,12B12 + 𝜙1,24B24)∇∇12 log(y1,t) = (1 + 𝜃1,1B + 𝜃1,2B2)(1 + 𝜃1,12B12 + 𝜃1,24B24)�̃�1,t,

(1 + 𝜙2,1B + 𝜙2,2B2)(1 + 𝜙2,12B12 + 𝜙2,24B24)∇∇12 log(y2,t) = (1 + 𝜃2,1B + 𝜃2,2B2)(1 + 𝜃2,12B12 + 𝜃2,24B24)�̃�2,t,

log(𝜌t) =
(1 + 𝜃1,1B + 𝜃1,2B2)(1 + 𝜃1,12B12 + 𝜃1,24B24)�̃�1,t

(1 + 𝜙1,1B + 𝜙1,2B2)(1 + 𝜙1,12B12 + 𝜙1,24B24)∇∇12
−

(1 + 𝜃2,1B + 𝜃2,2B2)(1 + 𝜃2,12B12 + 𝜃2,24B24)�̃�2,t

(1 + 𝜙2,1B + 𝜙2,2B2)(1 + 𝜙2,12B12 + 𝜙2,24B24)∇∇12
,

(2)

where Bh denotes the backward operator of h steps (e.g., the notation B3y1, t is equivalent to y1, t − 3), ∇d
S = (1 − BS)d

corresponds to the difference operator of order d at lag S= 12 (e.g., the notation ∇3
12𝜁t = (1 − B12)3𝜁t is equivalent to

𝜁t − 3 𝜁t−12 + 3 𝜁t−24 − 𝜁t−36). Since d and S act as powers in a polynomial involving the backward operator B, they can be
omitted when their value is one (for additional details, please, see pages 308 and 310 in Box et al.;12 or Box and Jenkins15).
The parameters 𝜃i,j and 𝜙i,j are, respectively, associated with the effects of the auto-regressive and moving-average compo-
nents of the variable i∈ {1, 2} at the temporal lag j> 0. The residuals �̃�i,t correspond to the error in predicting the variable
i at time t.

5.2 Model for monthly inventories

Similar to the proposal of Pollard,16 the equations governing the behavior of the weight classes are defined as:

⎧⎪⎪⎨⎪⎪⎩

y3,t = 𝜁t−1 y1,t−1 + 𝜁t−2 y1,t−2 + 𝜁t−3 𝛼1 y1,t−3 + 𝜀3,t,

y4,t = 𝜁t−3 (1 − 𝛼1) y1,t−3 + 𝜁t−4 y1,t−4 + 𝜁t−5 𝛼2 y1,t−5 + 𝜀4,t,

y5,t = 𝜁t−5 (1 − 𝛼2) y1,t−5 + 𝜁t−6 𝛼3 y1,t−6 + 𝜀5,t,

y6,t = 𝜁t−6 (1 − 𝛼3) y1,t−6 + 𝜁t−7 𝛼4 y1,t−7 + 𝜀6,t,

(3)

with the cohort allocation parameter 𝛼i ∈ [0, 1], for any i= 1, … , 4; the survival rate 𝜁t ∈ [0, 1] is associated with the
monthly cohort y1, t, such that the adjusted values of pig crop are propagated by accounting for pig losses within each



SARTORE et al. 1069

F I G U R E 3 Example of hog growth dynamics of the US swine population [Colour figure can be viewed at wileyonlinelibrary.com]

cohort (see Figure 3); while y3, t denotes the number hogs weighed less than 50 lbs on the first day of the month t, and
similarly, y4, t is used for hogs between 50 and 119 lbs, y5, t for hogs between 120 and 179 lbs, and y6, t for hogs weighing at
least 180 lbs.

The cohort allocation parameter 𝛼1 is used to split the weaned piglets at time t − 3 since W−1(50)≈ 2.33, that is, the
inverse function of the Bridges’ model10 presented in Section 3.3 computed for the upper bound of the first weight class.
This means that only a fraction of the piglets born three months earlier moves into the next weight class. Similarly, 𝛼2
splits the cohort born at time t − 5, since W−1(120)≈ 4.15; 𝛼3 splits the cohort born at time t − 6, since W−1(180)≈ 5.44;
and 𝛼4 splits the cohort born at time t − 7, since W−1(250)≈ 6.93.

The relationships in (3) constrain the number of hogs in each weight group to be consistent with the number of piglets
born in the past that are still alive. This formulation characterizes the survival probabilities of each monthly cohort during
its lifespan. The simplified system of equations (3) can be extended by considering additional effects from lagged residuals,
and/or including nonlinear terms. To avoid an over-parameterization of the model, the contribution of additional terms
is not considered here.

The SDTP model (3) allows for a flexible formulation that can track lasting changes in monthly pig cohorts. The
survival rates are cohort dependent and they are restricted also by minimizing the absolute values of the lagged differences
∇d𝜁t, for d= 1, … , 3. This approach has been inspired by the use of penalties as formulated in the P-spline proposal of
Eilers and Marx17 to maintain simple models without over-fitting the data. This technique can provide smooth survival
rates that quickly adapt by accounting for the temporal evolution of the US swine population. For example, a cohort of
piglets born during month t has a survival rate 𝜁t that is localized in time, and quantifies the chances of being alive up
to the moment the cohort enters the slaughter facility. Low values will be obtained for epidemic periods. Typical survival
rates have been estimated at the national level to about 95%.

6 ESTIMATION PROCEDURE

The estimation of the model parameters occurs in two stages (see Figure 1). The aim of the first stage is to produce initial
results by combining historical dynamics, the survey data, and the state recommendations. This is achieved by estimating
the model parameters on a customized dataset (see Figure 4) consisting of historical data and information from the current
quarter.

Current survey data at the record level are aggregated at the national level by accounting for the stratified sampling
design, non-response, and state recommendations. Micro data yk, t, i, for each variable k= 1, … , 7, are used in a weighted
sum

http://wileyonlinelibrary.com
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F I G U R E 4 Representation of the information flow in the dataset used for regression [Colour figure can be viewed at
wileyonlinelibrary.com]

y(1)k,t = rk,t

nt∑
i=1

wt,iyk,t,i,

where nt denotes the sample size at time t, the factor rk, t represents a calibrated ratio adjustment that accounts for the state
recommendations, and the survey weights wt, i are associated with the adjustments accounting for the incompleteness of
the list frame, the sampling probabilities, and the lack of response from some sample units.18 In particular, the survey
weight can be decomposed as

wt,i =
Nj,t

nj,t
𝜈j,t

nj,t

aj,t
, (4)

for any sample unit i in stratum j. The first factor in (4) corresponds to the inverse of the sample inclusion probability
computed as the ratio between nj, t (the sample size from stratum j at time t) and Nj, t (the size of the stratum j at time t); the
scalar 𝜈j,t denotes the inverse coverage probability of stratum j at time t to account for the records that are not on the NASS
list frame; the last factor represents the inverse of the response probability computed as the ratio between aj, t (responding
sample units from stratum j at time t) and nj, t.

In the first estimation stage, the SDTP model uses the survey summaries, y(1)
t , to compute initial fitted val-

ues for the variables of interest, ŷ(1)
t . These outcomes are then evaluated by the pre-board, which produces a

set of preliminary results, y(2)
t . Afterward, the SDTP model uses the values provided by the pre-board, y(2)

t , as
the most reliable source of information for the three months in the current quarter (see Figure 4). The fit-
ted values computed during the second estimation stage, ŷ(2)

t , are then used by the ASB to produce the official
statistics, ŷt.

The proposed time series methodology consists of two algorithms that, respectively, produce estimates for inventory
items (i.e., for variable yk, t, where k= 3, … , 7) and non-inventory items (i.e., for variable y1, t and y2, t). Both algorithms are
iterative in nature and take advantage of known methods for solving nonlinear optimization problems. Thus, one starts
with an initial guess for each of the parameter values that is updated by adding or subtracting non-negative quantities
computed along a descending direction. These adjustments produce values with a smaller sum of squared residuals. From
this new set of values another descending direction is computed. The process is repeated several times, until no further
adjustments are required to reduce the model error. The iterative procedure uses the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm19 to optimize the parameters and update the residuals of the equations in (2). On the other hand, the
limited memory algorithm for bound constrained optimization20 is applied to optimize the parameters in the system of
equations (3). A simulation study is presented in Appendix A to demonstrate the stability of the estimation processes
presented in Sections 6.1 and 6.2.

6.1 Optimization for non-inventory items

To optimize the total loss associated with estimation of the parameters in (2), the quantity

t0∑
t=1

[ 2∑
k=1

(�̃�k,t)2 + 𝛾 (�̃�𝜌,t)2 +
∑
𝓁=0

(y2,t−3𝓁+2 − 𝜑 y7,t−3𝓁)2

]
+ 𝛿

2∑
k=1

1∑
i=0

2∑
j=1

(|𝜙k,12i j| + |𝜃k,12i j|), (5)

http://wileyonlinelibrary.com


SARTORE et al. 1071

is minimized with respect to the parameters 𝜙k,12i j and 𝜃k,12i j, for k= 1, 2, and i= 0, 1, and j= 1, 2. These parameters have
an impact on the residuals �̃�k,t, for k= 1, 2, and �̃�𝜌,t, which represents the residual of the litter rate at time t in logarithmic
scale, that is, �̃�𝜌,t = �̃�1,t + �̃�2,t. The non-negative scalar 𝛾 governs the importance of the error associated to the litter rate,
and it can be established on historical data by applying standard cross-validation methods.21 In particular, one already
controls for the error �̃�𝜌,t by minimizing the sum of the square residuals governing the pig crop and the sows farrowed.
However, better estimates can be produced for 𝛾 > 0, which is kept fixed over each regression fit to reduce the amount of
computations. The penalty 𝛿 is used when performing LASSO regression13 on the time series models. By minimizing (5),
LASSO regression is simultaneously performed on the three equations in (2), and it also accounts for the expressions of
the system (1). This makes it possible to simultaneously estimate the parameters by accounting for inter-relationships
that affect the behavior of other variables.

The solution of the problem stated in (5) is obtained through iterative algorithms, which require a stable set of ini-
tial values to start the minimization. The initial choice of values at the start of the estimation algorithm is 𝜑 = 1

6
, an

approximation of the proportion of sows farrowed in a month from the breeding herd. The time series parameters are set
𝜙k,12i j = 0, and 𝜃k,12i j = 0, for k= 1, 2, and i= 0, 1, and j= 1, 2, reflecting the equilibrium of a static process. The initial val-
ues of the residuals �̃�k,t and �̃�𝜌,t are also set to zero, and updated at each iteration. These choices have deep consequences
on the model selection and the convergence of the algorithm. In fact, a different set of values can produce sub-optimal
results or may induce the numerical algorithm to prematurely converge to local minimum.

The optimization of the quantity in (5) is conducted for each value of 𝛿 in the set Δ = {0.8i ∶ i = 0, … , 40} by
performing the following steps:

1. For a given set of values for the parameters and the residuals, perform one updating step of the BFGS algorithm to
produce better values for the parameters, such that the sum of squared residuals in (5) becomes smaller;

2. Given the new values of the parameter, produce new values of residuals;
3. Determine whether the convergence is achieved. If not, repeat step 1 and 2 until convergence.

The chosen BFGS algorithm produces adjustments along a descent direction by efficiently approximating the curva-
ture of the quantities to minimize. This approach provides a computationally efficient approximation to the closed-form
solutions of a quadratic representation of the quantity to minimize, which provides a descent direction. The quadratic
representation is based on the second order approximation provided by the Taylor series expansion of the quantity to
minimize. It has been shown that the approximated solution of the quadratic form produced at each iteration converges
to the optimal point.19

Once parameter estimates are produced for the specified values of the penalty 𝛿, the model selection is performed by
setting to zero those values that, overall, are not significantly different from zero. The same regression mechanism (as
explained in the previous three iterative steps) is executed for fitting the model by setting 𝛿 = 0. Thus, the parameters
are freely allowed to vary without imposing any penalty during the optimization, but those forced to zero automatically
exclude variables that are not closely associated with the parameters to be estimated. Non-significant parameters are
chosen by a voting system. Each parameter in the SARIMA model is estimated 41 times (accordingly to the cardinality
of the set Δ). A binary vote, corresponding to each parameter estimate, is determined by testing whether the estimate is
significantly different from zero. The parameters that are forced to be zero have a number of votes that does not match
the highest number of votes among all the parameters.

This algorithm is also used to process the data to be used in the second estimation stage. As explained in Section 4,
the new values of historical and adjusted statistics after the pre-board sets their updated values for the current and past
four quarters are processed in the second estimation stage.

6.2 Optimization for inventory items

To reduce the sum of squared residuals associated with estimation of the parameters in (3), the following quantity is
minimized:

1
t0

t0∑
t=1

6∑
k=3

(𝜀k,t)2 + 𝜓

t0∑
t=1

(|𝜁t − 0.95| + 3∑
d=1

|∇d𝜁t|) , (6)
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such that 𝛼i, 𝜁t ∈ [0, 1], for any i= 1, … , 4 and t ∈ Z. All parameters 𝛼i and 𝜁t govern the behavior of the residu-
als 𝜀k, t as defined in (3), for k= 3, … , 6. The non-negative scalar 𝜓 is used to control for the size of the penalties.
Guntuboyina et al.22 provided theoretical results and optimality conditions of the estimator obtained by minimizing (6).

As for the monthly estimates, the choice of initial values to start the optimization procedure has important implica-
tions on the convergence of the algorithm, and the optimality of the results. For the equations in (3), the initial choice
of the parameters 𝛼i is set to 0.25, for i= 1, 2, and 0.75 for i= 3, 4. These values are based on the growth rates studied by
Shull,6 such that the life-span of a single market hog is consistent with the expected growth of its monthly cohort with
respect to the four weight groups. At the same time, the initial values of the survival rates 𝜁t are set to 0.95, for any t ∈ Z,
so as to represent a hypothetical case without disease outbreaks. These values, however, will be dynamically updated to
reflect the effective status of the hog population.

The algorithm proposed by Byrd et al.20 allows for simultaneous minimization of the quantity (6) with respect to all
parameters involved in the system of equations (3). This approach guarantees that the final results satisfy the boundary
constraints set by the model. Under the assumption that the dataset used for regression reflects the true status of the swine
population, the proposed methodology can quickly adapt to shocks and produce more reliable results (see Section 7 for
the performance evaluation of this model).

6.3 Variances of the response variables

The variances of the variables of interest are computed using the delta method:23

VAR[ŷt] ≈ G VAR[�̂�] G⊤,

where the Jacobian matrix G consists of the partial derivatives of the fitted model h(⋅ , ⋅), that is, gi,j = 𝜕

𝜕𝜗j
h (𝝑, xi)|𝝑=�̂�, for

any parameter j= 1, … , p, and set of covariates i= 1, … , n. The covariance matrix of the estimated parameters VAR[�̂�]
is computed through a low-rank approximation of its spectral decomposition. This approach is similar to the proposal of
Fan et al.,24 who derived the robust properties of the covariance matrix estimator. Cape et al.25 discussed the asymptotic
properties of low-rank approximations showing the unbiasedness and normality of the limiting distribution. Thus, the
matrix VAR[�̂�] is computed by using the spectral decomposition of the positive semidefinite Hessian matrix H(�̂�) = V𝚲V⊤,
such that

VAR[�̂�] ≈ V∗𝚲−1
∗ V⊤

∗ ,

where V is the matrix of the eigenvectors of Hessian, and the matrix V* denotes a sub-matrix of eigenvectors associated
with the positive eigenvalues of H(�̂�). The notation𝚲 denotes the diagonal matrix of the eigenvalues of the Hessian matrix,
H(�̂�), while the diagonal matrix 𝚲−1

∗ has its diagonal entries equal to the inverse of the positive eigenvalues of H(�̂�).

7 DATA ANALYSES

The hog survey is conducted every year in March, June, September, and December. The reference date for the survey is
the first day of the survey month. NASS uses a dual frame approach, consisting of the Hog Survey list frame and the NASS
area frame. The Hog Survey list frame is created from the NASS list frame, which includes all known farms in the US.
It includes all known operations with hogs and pigs except those for which the operation has less than 500 hogs and the
control data precede 2007. The frame accounts for about 97% of all hog and pig production. The June Area Survey, which
is drawn from the area frame, is used to adjust for the approximately 3% undercoverage of the list frame. The responses,
including the data for the manually imputed extreme operators, are edited for consistency and reasonableness using
automated systems. The edit logic ensures the coding of NASS administrative data, such as response codes, reporting
codes, and section completion codes, follows the methodological rules associated with the survey design. The survey data
are also evaluated for early signs of the onset of a shock. The emergence of the porcine epidemic diarrhea virus (PEDv) in
2013 affected the hog population, making it challenging to accurately estimate total inventory. The constrained SSM1 is
currently used at NASS to produce quarterly estimates, and it is relatively inflexible and fails when shocks occur. In fact,
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the input data cannot override the rigid constraints nor a fixed survival rate. This results in a lag of at least one quarter in
detecting a shock.

The proposed SDTP model is compared to both the SSM and Kedem and Pan’s model3 using classical model selec-
tion criteria. In particular, Hyndman and Koehler26 provided a detailed review about measures of accuracy. In general,
the criteria adopted to assess the performance of a regression model include (but are not restricted to) the following
measures:26,27

• Mean absolute error (MAE) is calculated by taking the arithmetic average of absolute residuals, which are computed
as the difference between the fitted value ŷk,t, and true value y∗k,t:

MAEk = 1
T

T∑
t=1

|y∗k,t − ŷk,t|. (7)

MAE reports the magnitude of the residuals, and it is robust to outliers.
• Root mean square error (RMSE) is very similar to MAE, but it is computed as the square root taken over the average of

the squared residuals:

RMSEk =

√√√√ 1
T

T∑
t=1

(y∗k,t − ŷk,t)2. (8)

In comparison to the MAE, RMSE uses quadratic residuals to emphasize the presence of outliers.
• Mean absolute percentage error (MAPE) is defined by scaling the absolute residuals with respect to the true value:

MAPEk = 100%
T

T∑
t=1

|||||
y∗k,t − ŷk,t

y∗k,t

||||| . (9)

This index reports the relative distance between fitted and true values as a percentage. MAPE is also robust to outliers
as MAE.

• Mean percentage error (MPE) is computed as:

MPEk = 100%
T

T∑
t=1

(
y∗k,t − ŷk,t

y∗k,t

)
. (10)

This measure indicates whether the model is underestimating the true values (by having more negative residuals), or
is overestimating (by having more positive residuals).

NASS official estimates1 published for the quarters between 2013 and 2017 are used for comparing the results produced
by the three models. NASS historical data have been used for this analysis starting from the first quarter in 2008. Quarterly
estimates for pig crop, sows farrowed, breeding herd, and the four weight groups are produced directly from the models.
Total market hogs are computed by aggregating the inventory estimates ŷk,t, for k= 3, … , 6. Total hogs in the US are
computed by adding the number of breeding sows and boars to the total value of market hogs.

The comparisons among the SDTP, Kedem and Pan (KP) model, and the SSM are shown in Figure 5. These graphics
show the statistics as formulated in Equations (7)–(10). Overall, the KP model produces more accurate results for pig
crop, sows farrowed, and breeding herd. The other two models are more reliable in providing results for the four classes of
market hogs, and this implies a chain effect on the accuracies of total market hogs and total hogs due to error propagation.
The SDTP model produces better inventory numbers for the four market groups, since it accounts for more realistic
dynamics of the US swine population. On the other hand, due to the lack of monthly data for market hogs and breeding
herd inventory, the SDTP model relies on the SARIMA forecasts of the sows farrowed to quantify the size of the breeding

1Fianl official NASS estimates from 2013 to 2017 are available at https://downloads.usda.library.cornell.edu/usda-esmis/files/jd472w45t/h128nn160/
m613n493n/hgpgsb19.pdf (accessed on August 12, 2020).

https://downloads.usda.library.cornell.edu/usda-esmis/files/jd472w45t/h128nn160/m613n493n/hgpgsb19.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/jd472w45t/h128nn160/m613n493n/hgpgsb19.pdf
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F I G U R E 5 Accuracy of the model-based estimates when compared to the final board estimates

herd. This results in a MAPE that is still within 5%, but it is much higher than the MAPEs computed for other variables.
Both the KP and the SDTP models perform better than the SSM for non-inventory items. Although the KP model produces
the best MAE and RMSE for pig crop, the SDTP model has a similar performance, and both are substantially better than
the SSM.

When computing the total number of hogs, the KP model performs better than the SSM due to the high accuracy
associated with the breeding herd results. However, the SSM and the KP model have similar MAEs and RMSEs for total
market hogs. On the other hand, the MAPEs computed with the results from the SDTP model for the classes of market
hogs weighing above 50 lbs are all below 2%. The SDTP model produced a MAPE of 2.54% for market hogs weighing
less than 50 lbs. Both the SSM and the KP model produce MAPEs for the four weight classes that are larger than 2.35%.
Moreover, the KP model tends to severely overestimate the number of market hogs below 50 lbs and underestimate the
market hogs between 50 and 119 lbs.

8 FINAL REMARKS AND CONCLUSIONS

The proposed model produces monthly estimates for the US swine population. All methods currently in use at USDA
NASS produce quarterly inventory estimates. This attempt to downscale the time resolution of the swine inventory esti-
mates to the monthly level has been partly successful in producing accurate estimates. In comparison with the current
SSM,1 the SDTP model addresses the rigidity issues due to an over-constrained formulation of the SSM. The SDTP model
also benefits from a smoothed formulation of the survival rates to capture departures from periods of equilibrium.

This methodology can be extended to produce state-level estimates that account for interstate transport. The quarterly
survey does not provide this information, but other administrative sources may provide the in-flow and out-flow of hogs
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among the states. By adopting a dynamic graphical model at the state level, with the proper considerations made for the
national level, more reliable model-based estimates can be produced.

A web-scraping technique to detect disease outbreaks has been recently developed at NASS. However, it is not clear
how to incorporate web-scraped information in the modeling process. The current state of this technology provides
warnings related to disease outbreaks affecting the hog population.
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APPENDIX A. SIMULATION STUDY

This appendix provides additional information on the SDTP model developed at USDA NASS to quantify the size of the
US swine population on a monthly basis. A simulation study based on a parametric bootstrap technique is conducted
with survey and historical data to assess both the uncertainties of the parameters and the stability of the SDTP model (by
looking at the fitted values). The bootstrap replicates are produced in two steps:

1. The survey data are adjusted and aggregated at the national level to form the so-called ADXX estimates. These values
are further adjusted and calibrated to remove systematic bias.

2. To produce pre-board estimates, the SDTP model uses the adjusted survey estimates as response values for the current
and the previous two months. Historical data are also used to inform the model on earlier temporal dynamics (see
Figure 4).

In contrast to the other models developed at NASS, the SDTP model uses the information available from the quarterly
survey on a monthly basis. The inventory numbers, such as breeding herd and market hogs (distinguished in four weight
groups) refer to quantities measured on the first day of the month when the survey is conducted. Data points on a monthly
basis are generated by rearranging the information through the allocation of monthly pig crop and sows farrowed on
that corresponding month. The inventory numbers appear on data points at the first day of the month when the survey
is conducted, but they are missing for the two months before data collection (see Figure 4). The missing values are then
imputed using the model dynamics and the information from the pig crop and sows farrowed monthly data, which are
fully available.

For this simulation study, December 2017 is considered as the current month. Parametric bootstrap28 is used to gen-
erate random numbers drawn from a normal distribution with mean and variance computed directly from the ADXX
survey data of the December 2017. The random draws replace the original aggregated survey data obtained for the last
quarter of 2017 (i.e., for time t, t − 1 and t − 2; see Figure 4), while the historical values for time t − j, where j∈ {3, 4, … },
remain fixed throughout the simulation. The monthly results produced by a single bootstrap replicate are then processed
to resemble the quarterly statistics presented for the pre-board (see Table A1). Repeated estimates are produced using
the SDTP model by processing 111 quarterly data and 120 rearranged data points on a monthly basis. For each bootstrap
replicate, the fitted values of the inventories, pig crop and sows farrowed are stored together with the estimates of the
model parameters allowing the properties of the proposed model and estimation methodology to be studied.

The averages, standard errors, and coefficients of variation (CV) shown in Table A1 for inventory and non-inventory
items are produced with 1000 bootstrap replicates. These model results indicate that the regression methodology
developed for the SDTP is very stable, in fact the standard errors and CV are small.

The SDTP parameters can be grouped according to their purpose into four classes:

1. Farrowing rate (𝜑). The bootstrap mean is computed to be around 1.811 with 0.0001 standard deviation. Figure A1
shows the empirical distribution of the bootstrap estimates.

2. SARIMA dynamics for (pig crop and sows farrowed). Mean and standard error of parameter estimates are shown in
Table A2, while the bootstrap estimate distribution are represented by the box-plots in Figure A2.

3. Survival rates (𝜁t). The average dynamics and their standard errors computed with the 1000 bootstrap replicates are
shown in Figure A3. The time series of the bootstrap means of the estimated survival rates reasonably show a cyclical
pattern with a seasonal minimum in the autumn. As expected, the standard errors computed at the extremes of the
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T A B L E A1 SDTP model outcomes from 1000
bootstrap replicates

Average (1000 heads) Std. Err. C.V. (%)

Tot. Hogs 69,099.857 13.400 0.019

Breeding Herd 6562.179 1.021 0.016

Market Hogs 62,537.678 13.251 0.021

Group 1 18,744.718 12.063 0.064

Group 2 18,406.682 6.924 0.038

Group 3 12,942.250 5.977 0.046

Group 4 12,444.028 2.794 0.022

Sows Farrowed 3161.076 1.588 0.050

Pig Crop 33,744.931 14.700 0.044

Litter Rate 10.681 0.007 0.066

F I G U R E A1 Empirical density function for the farrowing rate
estimated with 1000 bootstrap replicates

F I G U R E A2 Box-plots for the bootstrap parameter estimates of the SARIMA models for pig crop (on the left) and sows farrowed (on
the right)
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F I G U R E A3 Average dynamics of the estimated survival rates (on the left), and standard errors of estimated survival rates (on the right)

F I G U R E A4 Box-plots of cohort allocation parameter
bootstrap estimates from a weight class to the next

T A B L E A2 SARIMA parameter estimates from 1000 bootstrap replicates (standard errors in parenthesis)

𝝓k,1 𝝓k,2 𝝓k,12 𝝓k,24 𝜽k,1 𝜽k,2 𝜽k,12 𝜽k,24

Pig crop, k= 1 −0.0922 −0.1234 0.2660 0.1605 −0.0195 −0.0007 −0.3820 −0.0123

(0.0048) (0.0018) (0.0050) (0.0053) (0.0080) (0.0006) (0.00330) (0.0129)

Saws farrowed, k= 2 −0.0258 −0.0671 0.4229 0.1962 0.0057 −0.0064 −0.2776 −0.0032

(0.0041) (0.0022) (0.0025) (0.0057) (0.0083) (0.0004) (0.0023) (0.0129)

time series are higher than the standard errors for the survival rates computed between 2009 and 2016 with most of the
values reported below 0.0001. Furthermore, the bootstrap standard errors evaluated at the end of 2012 show increased
variability due to the PEDv outbreak.

4. Cohort allocation parameters (𝛼1, 𝛼2, 𝛼3, 𝛼4). Figure A4 shows the box-plot of the bootstrap estimates for the cohort
allocation parameters, while Table A3 presents the mean and standard error of the bootstrap estimates.
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T A B L E A3 Cohort allocation parameter estimates from 1000
bootstrap replicates (standard errors in parenthesis)

𝜶1 𝜶2 𝜶3 𝜶4

0.13 0.00 0.38 0.59

(2.8e-05) (0.0e+00) (2.9e-05) (5.7e-05)
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